Hölder Regularity for a Kolmogorov Equation

نویسنده

  • ANDREA PASCUCCI
چکیده

We study the interior regularity properties of the solutions to the degenerate parabolic equation, ∆xu+ b∂yu− ∂tu = f, (x, y, t) ∈ R × R× R, which arises in mathematical finance and in the theory of diffusion processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hölder infinite Laplacian and Hölder extensions

In this paper we study the limit as p → ∞ of minimizers of the fractional W -norms. In particular, we prove that the limit satisfies a non-local and non-linear equation. We also prove the existence and uniqueness of solutions of the equation. Furthermore, we prove the existence of solutions in general for the corresponding inhomogeneous equation. By making strong use of the barriers in this con...

متن کامل

Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation

We present a regularity result for weak solutions of the 2D quasi-geostrophic equation with supercritical (α < 1/2) dissipation (−∆) : If a Leray-Hopf weak solution is Hölder continuous θ ∈ C(R) with δ > 1 − 2α on the time interval [t0, t], then it is actually a classical solution on (t0, t]. AMS (MOS) Numbers: 76D03, 35Q35

متن کامل

Regularity Criteria for the Dissipative Quasi-geostrophic Equations in Hölder Spaces

We study regularity criteria for weak solutions of the dissipative quasi-geostrophic equation (with dissipation (−∆)γ/2, 0 < γ ≤ 1). We show in this paper that if θ ∈ C((0, T ); C1−γ), or θ ∈ Lr((0, T ); Cα) with α = 1−γ+ γ r is a weak solution of the 2D quasi-geostrophic equation, then θ is a classical solution in (0, T ]× R2. This result improves our previous result in [18].

متن کامل

Pathwise uniqueness for stochastic reaction-diffusion equations in Banach spaces with an Hölder drift component∗

We prove pathwise uniqueness for an abstract stochastic reaction-diffusion equation in Banach spaces. The drift contains a bounded Hölder term; in spite of this, due to the space-time white noise it is possible to prove pathwise uniqueness. The proof is based on a detailed analysis of the associated Kolmogorov equation. The model includes examples not covered by the previous works based on Hilb...

متن کامل

A Hölder infinity Laplacian

In this paper we study the limit as p →∞ of minimizers of the fractional W -norms. In particular, we prove that the limit satisfies a non-local and non-linear equation. We also prove the existence and uniqueness of solutions of the equation. Furthermore, we prove the existence of solutions in general for the corresponding inhomogeneous equation. By making strong use of the barriers in this cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002